scholarly journals A Land Surface Water Deficit Model for an Arid and Semiarid Region: Impact of Desertification on the Water Deficit Status in the Loess Plateau, China

1999 ◽  
Vol 12 (1) ◽  
pp. 244-257 ◽  
1999 ◽  
Vol 12 (1) ◽  
pp. 244-257 ◽  
Author(s):  
Qinxue Wang ◽  
Hidenori Takahashi

Abstract A land surface water deficit model was developed for a large-scale heterogeneous arid and semiarid area with various soil, vegetation, and land use types, and used to simulate seasonal and spatial variability in potential (E0) and actual (Ea) evapotranspiration and an index of water deficit (WDI). Comparisons with the results of other commonly used models and natural vegetation conditions suggest that this model can give an estimate of the success for large-scale regional studies. By using the model, the authors estimated E0, Ea, and WDI in a grid cell of 0.25° lat × 0.25° long over the Loess Plateau, China. Finally, the sensitivities of the model to both a vegetation parameter and an assumed desertification case were simulated, and several highly sensitive areas were found to be the risk regions to desertification.


2019 ◽  
Vol 11 (3) ◽  
pp. 327 ◽  
Author(s):  
Xia Wang ◽  
Feng Ling ◽  
Huaiying Yao ◽  
Yaolin Liu ◽  
Shuna Xu

Mapping land surface water bodies from satellite images is superior to conventional in situ measurements. With the mission of long-term and high-frequency water quality monitoring, the launch of the Ocean and Land Colour Instrument (OLCI) onboard Sentinel-3A and Sentinel-3B provides the best possible approach for near real-time land surface water body mapping. Sentinel-3 OLCI contains 21 bands ranging from visible to near-infrared, but the spatial resolution is limited to 300 m, which may include lots of mixed pixels around the boundaries. Sub-pixel mapping (SPM) provides a good solution for the mixed pixel problem in water body mapping. In this paper, an unsupervised sub-pixel water body mapping (USWBM) method was proposed particularly for the Sentinel-3 OLCI image, and it aims to produce a finer spatial resolution (e.g., 30 m) water body map from the multispectral image. Instead of using the fraction maps of water/non-water or multispectral images combined with endmembers of water/non-water classes as input, USWBM directly uses the spectral water index images of the Normalized Difference Water Index (NDWI) extracted from the Sentinel-3 OLCI image as input and produces a water body map at the target finer spatial resolution. Without the collection of endmembers, USWBM accomplished the unsupervised process by developing a multi-scale spatial dependence based on an unsupervised sub-pixel Fuzzy C-means (FCM) clustering algorithm. In both validations in the Tibet Plate lake and Poyang lake, USWBM produced more accurate water body maps than the other pixel and sub-pixel based water body mapping methods. The proposed USWBM, therefore, has great potential to support near real-time sub-pixel water body mapping with the Sentinel-3 OLCI image.


2014 ◽  
Vol 5 (7) ◽  
pp. 672-681 ◽  
Author(s):  
Zhiqiang Du ◽  
Wenbo Li ◽  
Dongbo Zhou ◽  
Liqiao Tian ◽  
Feng Ling ◽  
...  

2021 ◽  
Author(s):  
Tobias Stacke ◽  
Stefan Hagemann

Abstract. Global hydrological models (GHMs) are a useful tool in the assessment of the land surface water balance. They are used to further the understanding of interactions between water balance components as well as their past evolution and potential future development under various scenarios. While GHMs are a part of the Hydrologist's toolbox since several decades, the models are continuously developed. In our study, we present the HydroPy model, a revised version of an established GHM, the Max-Planck Institute for Meteorology's Hydrology Model (MPI-HM). Being rewritten in Python, the new model requires much less effort in maintenance and due to its flexible infrastructure, new processes can be easily implemented. Besides providing a thorough documentation of the processes currently implemented in HydroPy, we demonstrate the skill of the model in simulating the land surface water balance. We find that evapotranspiration is reproduced realistically for the majority of the land surface but is underestimated in the tropics. The simulated river discharge correlates well with observations. Biases are evident for the annual accumulated discharge, however they can – at least to some part – be attributed to discrepancies between the meteorological model forcing data and the observations. Finally, we show that HydroPy performs very similar to MPI-HM and, thus, conclude the successful transition from MPI-HM to HydroPy.


Sign in / Sign up

Export Citation Format

Share Document